Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Audiol ; : 1-5, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-20235179

ABSTRACT

OBJECTIVE: To gain medical insight into the clinical course and safety of otolaryngologic disorders following immunisation with severe acute respiratory coronavirus (SARS-CoV-2) mRNA-based vaccines. DESIGN: Case description. STUDY SAMPLE: We report four cases of transient audio-vestibular symptoms, which occurred shortly after inoculation of two BNT162b2 (Pfizer-BioNTech®) and mRNA-1273 (Moderna®) vaccines. RESULTS: Hearing loss was unilateral in all cases and recovered at least partially: it was associated with persistent gait instability in two cases, after 1 and 7 months. Trigger mechanisms underpinning audio-vestibular impairment remain uncertain. Immune tolerance mechanisms with off-target innate activation of T-lymphocytes may be involved in vestibulocochlear nerve disorders, as for other cranial nerves involvement. CONCLUSIONS: The occurrence of audio-vestibular manifestations following mRNA-based vaccines needs ENT monitoring to support their causality in such rare vaccine-related adverse events. Audio-vestibular disorders appeared of transitory nature, including hearing loss, and should not deter further efforts in large-scale vaccination campaigns against SARS-CoV-2.

2.
Front Allergy ; 3: 818049, 2022.
Article in English | MEDLINE | ID: covidwho-2304185

ABSTRACT

Background: The newly developed mRNA-based COVID-19 vaccines can provoke anaphylaxis, possibly induced by polyethylene glycol (PEG) contained in the vaccine. The management of persons with a history of PEG allergy or with a suspected allergic reaction after the first dose remains to be defined. Methods: In this real-life study, we defined two cohorts of individuals: one pre-vaccination including 187 individuals with high-risk profiles for developing anaphylaxis and a second post-vaccination including 87 individuals with suspected allergic reactions after the COVID-19 mRNA vaccine. Upon negative skin test with an mRNA vaccine, a two-step (10-90%) vaccination protocol was performed. Positive skin tests were confirmed with the basophil activation test (BAT). Results: Among 604,267 doses of vaccine, 87 suspected allergic reactions (5 after the booster) were reported to our division for further investigations: 18/87 (21%) were consistent with anaphylaxis, 78/87 (90%) were female, and 47/87 (54%) received the BNT162b2 mRNA vaccine. Vaccine skin tests were negative in 96% and 76% of the pre- and post-vaccination cohorts, respectively. A two-step vaccination was tolerated in 232/236 (98%) of individuals with negative tests. Four individuals experienced isolated asthmatic reactions during the two-step challenge. Vaccine-positive skin tests were consistently confirmed by BAT; CD63 and CD203c expression was selectively inhibited with ibrutinib, suggesting an IgE-dependent mechanism. Conclusion: Sensitization to SARS-CoV-2 mRNA vaccines can be detected with intradermal testing. Significantly more individuals were sensitized to mRNA vaccines in the post-vaccination cohort. A two-step 10-90%-vaccination protocol can be safely administered upon negative skin testing.

3.
Front Med (Lausanne) ; 10: 1114546, 2023.
Article in English | MEDLINE | ID: covidwho-2280130

ABSTRACT

Background: Sepsis is a devastating disease which causes yearly over 10 million deaths worldwide. In 2017, the World Health Organization (WHO) issued a resolution prompting member states to improve the prevention, recognition, and management of sepsis. The 2021 European Sepsis Report revealed that-contrary to other European countries-Switzerland had not yet actioned the sepsis resolution. Methods: A panel of experts convened at a policy workshop to address how to improve awareness, prevention, and treatment of sepsis in Switzerland. Goal of the workshop was to formulate a set of consensus recommendations toward creating a Swiss Sepsis National Action Plan (SSNAP). In a first part, stakeholders presented existing international sepsis quality improvement programs and national health programs relevant for sepsis. Thereafter, the participants were allocated into three working groups to identify opportunities, barriers, and solutions on (i) prevention and awareness, (ii) early detection and treatment, and (iii) support for sepsis survivors. Finally, the entire panel summarized the findings from the working groups and identified priorities and strategies for the SSNAP. All discussions during the workshop were transcribed into the present document. All workshop participants and key experts reviewed the document. Results: The panel formulated 14 recommendations to address sepsis in Switzerland. These focused on four domains, including (i) raising awareness in the community, (ii) improving healthcare workforce training on sepsis recognition and sepsis management; (iii) establishing standards for rapid detection, treatment and follow-up in sepsis patients across all age groups; and (iv) promoting sepsis research with particular focus on diagnostic and interventional trials. Conclusion: There is urgency to tackle sepsis. Switzerland has a unique opportunity to leverage from lessons learnt during the COVID-19 pandemic to address sepsis as the major infection-related threat to society. This report details consensus recommendations, the rationale thereof, and key discussion points made by the stakeholders on the workshop day. The report presents a coordinated national action plan to prevent, measure, and sustainably reduce the personal, financial and societal burden, death and disability arising from sepsis in Switzerland.

4.
BMJ Open ; 12(12): e067251, 2022 12 20.
Article in English | MEDLINE | ID: covidwho-2193801

ABSTRACT

INTRODUCTION: Sepsis is a major cause of death among hospitalised patients. Accumulating evidence suggests that immune response during sepsis cascade lies within a spectrum of dysregulated host responses. On the one side of the spectrum there are patients whose response is characterised by fulminant hyperinflammation or macrophage activation-like syndrome (MALS), and on the other side patients whose immune response is characterised by immunoparalysis. A sizeable group of patients are situated between the two extremes. Recognising immune endotype is very important in order to choose the appropriate immunotherapeutic approach for each patient resulting in the best chance to improve the outcome. METHODS AND ANALYSIS: ImmunoSep is a randomised placebo-controlled phase 2 clinical trial with a double-dummy design in which the effect of precision immunotherapy on sepsis phenotypes with MALS and immunoparalysis is studied. Patients are stratified using biomarkers. Specifically, 280 patients will be 1:1 randomly assigned to placebo or active immunotherapy as adjunct to standard-of-care treatment. In the active immunotherapy arm, patients with MALS will receive anakinra (recombinant interleukin-1 receptor antagonist) intravenously, and patients with immunoparalysis will receive subcutaneous recombinant human interferon-gamma. Τhe primary endpoint is the comparative decrease of the mean total Sequential Organ Failure Assessment score by at least 1.4 points by day 9 from randomisation. ETHICS AND DISSEMINATION: The protocol is approved by the German Federal Institute for Drugs and Medical Devices; the National Ethics Committee of Greece and by the National Organization for Medicines of Greece; the Central Committee on Research Involving Human Subjects and METC Oost Netherland for the Netherlands; the National Agency for Medicine and Medical Products of Romania; and the Commission Cantonale d'éthique de la recherche sur l'être human of Switzerland. The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04990232.


Subject(s)
COVID-19 , Sepsis , Humans , SARS-CoV-2 , Double-Blind Method , Sepsis/therapy , Treatment Outcome , Immunotherapy , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
5.
Frontiers in allergy ; 3, 2022.
Article in English | EuropePMC | ID: covidwho-2058516

ABSTRACT

Background The newly developed mRNA-based COVID-19 vaccines can provoke anaphylaxis, possibly induced by polyethylene glycol (PEG) contained in the vaccine. The management of persons with a history of PEG allergy or with a suspected allergic reaction after the first dose remains to be defined. Methods In this real-life study, we defined two cohorts of individuals: one pre-vaccination including 187 individuals with high-risk profiles for developing anaphylaxis and a second post-vaccination including 87 individuals with suspected allergic reactions after the COVID-19 mRNA vaccine. Upon negative skin test with an mRNA vaccine, a two-step (10–90%) vaccination protocol was performed. Positive skin tests were confirmed with the basophil activation test (BAT). Results Among 604,267 doses of vaccine, 87 suspected allergic reactions (5 after the booster) were reported to our division for further investigations: 18/87 (21%) were consistent with anaphylaxis, 78/87 (90%) were female, and 47/87 (54%) received the BNT162b2 mRNA vaccine. Vaccine skin tests were negative in 96% and 76% of the pre- and post-vaccination cohorts, respectively. A two-step vaccination was tolerated in 232/236 (98%) of individuals with negative tests. Four individuals experienced isolated asthmatic reactions during the two-step challenge. Vaccine-positive skin tests were consistently confirmed by BAT;CD63 and CD203c expression was selectively inhibited with ibrutinib, suggesting an IgE-dependent mechanism. Conclusion Sensitization to SARS-CoV-2 mRNA vaccines can be detected with intradermal testing. Significantly more individuals were sensitized to mRNA vaccines in the post-vaccination cohort. A two-step 10–90%-vaccination protocol can be safely administered upon negative skin testing.

6.
Leukemia ; 36(6): 1467-1480, 2022 06.
Article in English | MEDLINE | ID: covidwho-1830027

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel virus that spread worldwide from 2019 causing the Coronavirus disease 19 (COVID-19) pandemic. SARS-CoV-2 infection is characterised by an initial viral phase followed in some patients by a severe inflammatory phase. Importantly, immunocompromised patients may have a prolonged viral phase, shedding infectious viral particles for months, and absent or dysfunctional inflammatory phase. Among haematological patients, COVID-19 has been associated with high mortality rate in acute leukaemia, high risk-myelodysplastic syndromes, and after haematopoietic cell transplant and chimeric-antigen-receptor-T therapies. The clinical symptoms and signs were similar to that reported for the overall population, but the severity and outcome were worse. The deferral of immunodepleting cellular therapy treatments is recommended for SARS-CoV-2 positive patient, while in the other at-risk cases, the haematological treatment decisions must be weighed between individual risks and benefits. The gold standard for the diagnosis is the detection of viral RNA by nucleic acid testing on nasopharyngeal-swabbed sample, which provides high sensitivity and specificity; while rapid antigen tests have a lower sensitivity, especially in asymptomatic patients. The prevention of SARS-CoV-2 infection is based on strict infection control measures recommended for aerosol-droplet-and-contact transmission. Vaccinations against SARS-CoV-2 has shown high efficacy in reducing community transmission, hospitalisation and deaths due to severe COVID-19 disease in the general population, but immunosuppressed/haematology patients may have lower sero-responsiveness to vaccinations. Moreover, the recent emergence of new variants may require vaccine modifications and strategies to improve efficacy in these vulnerable patients. Beyond supportive care, the specific treatment is directed at viral replication control (antivirals, anti-spike monoclonal antibodies) and, in patients who need it, to the control of inflammation (dexamethasone, anti-Il-6 agents, and others). However, the benefit of all these various prophylactic and therapeutic treatments in haematology patients deserves further studies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2
7.
BMJ Open ; 11(7): e049232, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297975

ABSTRACT

OBJECTIVE: To assess the SARS-CoV-2 transmission in healthcare workers (HCWs) using seroprevalence as a surrogate marker of infection in our tertiary care centre according to exposure. DESIGN: Seroprevalence cross-sectional study. SETTING: Single centre at the end of the first COVID-19 wave in Lausanne, Switzerland. PARTICIPANTS: 1874 of 4074 responders randomly selected (46% response rate), stratified by work category among the 13 474 (13.9%) HCWs. MAIN OUTCOME MEASURES: Evaluation of SARS-CoV-2 serostatus paired with a questionnaire of SARS-CoV-2 acquisition risk factors internal and external to the workplace. RESULTS: The overall SARS-CoV-2 seroprevalence rate among HCWs was 10.0% (95% CI 8.7% to 11.5%). HCWs with daily patient contact did not experience increased rates of seropositivity relative to those without (10.3% vs 9.6%, respectively, p=0.64). HCWs with direct contact with patients with COVID-19 or working in COVID-19 units did not experience increased seropositivity rates relative to their counterparts (10.4% vs 9.8%, p=0.69 and 10.6% vs 9.9%, p=0.69, respectively). However, specific locations of contact with patients irrespective of COVID-19 status-in patient rooms or reception areas-did correlate with increased rates of seropositivity (11.9% vs 7.5%, p=0.019 and 14.3% vs 9.2%, p=0.025, respectively). In contrast, HCWs with a suspected or proven SARS-CoV-2-infected household contact had significantly higher seropositivity rates than those without such contacts (19.0% vs 8.7%, p<0.001 and 42.1% vs 9.4%, p<0.001, respectively). Finally, consistent use of a mask on public transportation correlated with decreased seroprevalence (5.3% for mask users vs 11.2% for intermittent or no mask use, p=0.030). CONCLUSIONS: The overall seroprevalence was 10% without significant differences in seroprevalence between HCWs exposed to patients with COVID-19 and HCWs not exposed. This suggests that, once fully in place, protective measures limited SARS-CoV-2 occupational acquisition within the hospital environment. SARS-CoV-2 seroconversion among HCWs was associated primarily with community risk factors, particularly household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Health Personnel , Humans , Seroepidemiologic Studies , Switzerland/epidemiology , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL